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A new numerical expression, called the regularized resolvent
transform (RRT), is presented. RRT is a direct transformation of
the truncated time-domain data into a frequency-domain spec-
trum and is suitable for high-resolution spectral estimation of
multidimensional time signals. One of its forms, under the condi-
tion that the signal consists only of a finite sum of damped
sinusoids, turns out to be equivalent to the exact infinite time
discrete Fourier transformation. RRT naturally emerges from the
filter diagonalization method, although no diagonalization is re-
quired. In RRT the spectrum at each frequency s is expressed in
terms of the resolvent R(s) ™" of a small data matrix R(s), that is
constructed from the time signal. Generally, R is singular, which
requires certain regularization. In particular, the Tikhonov regu-
larization, R™ ~ [R'R + g°] 'R with regularization parameter g,
appears to be computationally both efficient and very stable. Nu-
merical implementation of RRT is very inexpensive because even
for extremely large data sets the matrices involved are small. RRT
is demonstrated using model 1D and experimental 2D NMR
signals.  © 2000 Academic Press

1. INTRODUCTION

There is a certain attraction to the idea ofransform,that
converts data from one representation to another, more uselfbll
representation. In the common case of Fourier transformati
(FT) a continuous function of time(t) is transformed to a
function of frequencyl(s), by performing, for instance, a
Fourier integral. For each value sfand signalc(t) we can

obtain a complex number that gives the local amplitu@s.

The simplicity and transparency of the transform make |
appealing even when, as in the discrete FT (DFT), the digital
spectrum may deviate appreciably from the true integral rep-

resentation X).

damped sinusoids in the time domain into Lorentzian lines ir
the frequency domain, butithoutany intermediate line list. It
can be implemented efficiently and maintains the spirit of loca
spectral analysis that can be lost in the quest to obtain a gial
parametric fit of an entire data set.

2. 1D RRT

In this section we consider a 1D spectral analysis problen
which has been previously treated by a variety of methods an
is well understood. However, the expressions derived here al
generalized to the less well explored multidimensional case i
the next section.

Given a discrete equidistant time sigicéht), our goal here
is to estimate its infinite time DFT,

” ) 1)
I(s) = > c(nv)e'”fs( 1- 2), [1]

n=0

but using only a finite portion of the data with= 0, 1, ...,

N — 1. The term (1— §,,/2) in Eq. [1] multipliesc(0) by 3

torrect the error introduced by the discrete sum approxima
Oh of the continuous half-line Fourier integral.

The assumption used here to derive the linear algebrai
expressions is due to Wall and Neuhau&®iirf whichc(nr) is
associated with a time autocorrelation function of a fictitious
c&uantum system for some fictitious initial stabg,

c(nt) = (9o|U"Dy), 2]

By contrast, parametric methods that rely on fitting the datehere we used the round brackets for the symmetric (no
to a functional form are rather more complex in nature. Theyermitian) inner product,¥|®) = (®|¥). The effective evo-
typically rely on adjustable parameters to obtain satisfactolgtion operator0 may be nonunitary but is assumed to be
results and can be less user-friendly in operation. In this paggmmetric with respect to the inner product, i.eﬂ,\I(|d>) =
we bridge the parameter estimation approach to the transfo(rM|0<I>).
approach by introducing a new transform, the regularizedThe assumption that the evolution operatbthas a finite
resolvent transform (RRT). The RRT approach convertank K turns to be equivalent to assuming that the signal of
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question can be represented as a sum of ex&ctbomplex Rather surprisingly, Egs. [6] and [7] are working expres-
sinusoids 2), sions. In the case that Eq. [3] is exactly satisfied, Eq. [6] yields
the exact infinite time Fourier spectrum,

C(nT) — E d efin‘rwk' [3] K dk 0
k=1 ‘ I(s) = E 1= gifs w0 0(2) , (8]

k=1

with nondegenerate and generally complex frequensjesnd
complex coefficientsl,. In Refs. @, 3) the filter diagonaliza if we chooseM = K, even though only a finite part of the
tion method (FDM) was developed to compute those frequesignal dnr) of size N= 2M is used and the spectral param-
cies and coefficients by essentially diagonalizihin a special eterswy and d, are not computedThe result is also exact if
basis. It was, in particular, note@)(that a signal with total size M > K, although in this case the set of vectdrs is linearly
N = 2K yields exactlyK pairs (@, d.). These can then be dependent, requiring evaluation of a pseudo-inverse of th
used to evaluate the spectruifs). We do not recast the singularM X M matrix R(s). For example, the singular value
spectral estimation problem into one of calculating the spectfgcomposition (SVD) oR(s) could be used. In practice mea-
parameters, 3), not because the latter fails, but rather besured data contains some noise, so the matrices are not exac
cause the present approach leads to very elegant and nunféfigular, although they could still be very ill-conditioned,
cally efficient direct signal transformation which may be admplying that some kind of regularization will often be advan-
vantageous in certain contexts. It is also interesting thatt@geous. We will revisit this issue later in the paper.
spectrum, very similar to that obtained with FDM, may be Our result is also interesting because it is reminiscent of the
constructed without ever determining any spectral parametdrgthod referred to as MUSIC (multiple signal classification).
Substituting Eq. [2] into Eq. [1] and evaluating the geometn MUSIC, a pseudo-spectrum is constructed by evaluating :

ric sum analytically we obtain certain pseudo-inverse of a data matdx (Note that unlike the
present approach, the MUSIC spectrum is only useful fo

1 finding the unknown complex frequencies, and so is not
I(s) = <q>0 {ITSA — }q)o) [4] useful for NMR applications. Another approach, LPZ (linear

1-e™ 2 prediction z-transform) §), is a variant of the LP method in

_ _ _ which the infinite-time Fourier spectrum is estimated directly

Equation [4] cannot be used directly for calculatir(g) as from the data matrix inversion (more precisely, from the LP
we still peed to obtain a matrix representation of the auxi|ialbbefficients)_ However, LPZ has an unfavorahiénumerical
objectsU and®, in terms of the known date(nr). To do so, scaling with respect to the data sikeand is not commonly

as in Ref. 8), we introduce an auxiliary (Krylov) basis, used. Just like LPZ, Eq. [6] is numerically also very expensive
for realistic data sets. Fortunately, this problem can be circum
&, =0"P,, n=0,1,...,M—1. [5] Vvented by performing the spectral analysis locally in the fre-

guency domain. The FDM approach, @) is similar in spirit to

According to our assumption, the rank@fis K, so that the that commonly used in the engineering literature and known a
M = K Krylov vectors®, are generally linearly independent 2@mspacing” (see, e.g., Re@)(Also see Ref. ) related to

and we can rewrite Eq. [4] by evaluating everything in thithe present context). Here a basis localized in the frequenc
basis: domain is obtained by Fourier transformation of the Krylov

basis {0},

. c(0)
I(s) = C™R(s) 'C — ——, [6] M-1

2 b= emd, j=1,2,... K  [9]
. n=0
with R(s) = U, — €"U,, where the evolution operator and the

overlap matrix elements are defined as, respectivel.l = \yhere here and throughout the rest of the paper the tild

(Po|UDy), [Uolow = (Po|Py), and the coefficients of the jjantifies the use of the Fourier basis. The valgesould be
1 X M column vectorC are [C], = (®,|®,). Itis not hard to evenly spaced using

see B) thatU,, U,, andC are all representable in terms of the
signal data pointg(nTt) as

A 2 (10]
7 NMr
[Udaw =cl(n+n"+p)7], p=0,1 i
[C], = c(n7). [7] Ford =1 andK,;,, = M the transformation from the Krylov
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basis {®,}, to the Fourier basis CiJJ-} is unitary. However, as 0,B, = u0,B,, [16]
argued first in Ref.2) and later in 8), it is advantageous to use
a local basis of small sizk,, < M with 9 > 1 (e.9.,% = g solved for the eigenvalues and eigenvector§,. Although

1.1). It could be even more efficient to_usn_ultisca!e basig8)  this method might seem preferable to any other alternative, w
corresponding to a nonuniform distribution @f’s with j-  note that Eq. [15] can also be evaluated directly, for example

dependent Fourier lengtd = M; in Eq. [9], which describes | solving the associated linear system,
a very narrow frequency Wlndow in high resolution and the res%/

of the spectrum, in low resolution, while having minimal

. R(s)X(s) = C, [17]
overall size.
One can now use the new Fourier basis, Eq. [9], to reeval-
uate the matrices in Eq. [7], which after some mampulatloﬁsnd then using
(3) leads forj # j' to ( )
ar
) i qicl Mg~ g+ 7] I(s) = C"X(s) [18]
[Upli =S 1 e
o=01 In the 1D case the latter approach, Egs. [17] and [18], ma)
(o+)(M-1) actually appear computationally efficient if the spectrum is to
X > e"ic[(n+ p)T], [11] be evaluated at relatively few values @f This will be even
n=oM more so in the case @ = 2 and higher dimensionality.

A less obvious issue is the stability and robustness of th
whereS defines symmetrization operator over the varialles algorithm. The matri>R(s) may be very ill-conditioned, so its
andg;, inversion or use in Eq. [17] requires some kind of regulariza-

tion. One possibility is to use SVD dR(s) to calculate a
e N = N . pseudo-inverse by discarding the singular subspace. Howeve

Sa(en @) = 9l o) + 8ley @) [12] SVD, if applied for each value dof, would be quite computa-
tionally expensive. A much less expensive regularization of the
resolvent can be obtained using the Tikhonov regularizatiot

2M-2 (9)’

[Opli = > €™M =M —n—1))c[(n+p)7]. [13] 0)

. I(s) = CT(R(s)'R(s) + g? 'R(s)'C — %

Forj = |’ one has

(19]

Now by evaluatingC in the Fourier basis, . . ,
y €< where the dagger denotes the Hermitian conjugate gaisca

real number. With such a regularization the singularity in the
~ o denominator is removed aRkR{R + g% is a Hermitian and
[Clj= X e"c(n7), [14]  positive definite matrix.
n=o Equation [19] can be evaluated by solving the regularizec
Hermitian least squares problem,

M-1

we can rewrite Eq. [6] as

) (R'(9R(s) + g?)X(s) = R'C, [20]
I(s) = C'R(s) 'C — ——, [15] :
2 and then using Eq. [18].
B _ o It should be noted that the expensive matrix—matrix multi-
with R(s) = U, — €™U,. plication R(s) 'R(s) in Eq. [20], which is aK 3, process, does

Due to the very nature of the Fourier transformation theot have to be performed at each value of Significant
spectral properties around some frequescgre completely numerical saving can be achieved by using
defined by a very small subspac®f of size K, (e.g.,

Kuin = }0) with ¢; ~ s. Therefore, only a smak,;, X Ky, R(s)"R(s)
matrix R(s) has to be inverted in Eq. [15] to yield a well- o oo L L
converged spectruri(s). =U{Uo+ UlU; — e ™U]U, — e™UU,. [21]

Clearly, evaluation of Eq. [15] can be done for all values of
s within a chosen frequency window, once the correspondingGenerally, solution of a linear system scales alsKds,
generalized eigenvalue problem, however, one can solve Eq. [20] iteratively at eadby, e.g.,
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: . . . E
scaling, thus significantly reducing the overall numerical effort. xae
These issues will be explored in more detail in our forthcoming
publications. RAT. Ne32K

The spectral estimation given by Eq. [19] (or [18, 20]) is one JM
b

a conjugate gradient method, which may have much better Aj\k

of the main results of this paper. Operationally it has a status of 9=C
“transform” (like FFT), while a “method,” e.g., the filter di- \
agonalization method, would refer to a procedure that would a=3x10" jﬂk JJ\”"L JJLL JVM
generally be less obvious to use. More precisely, Eq. [19] -
correspoan to a direct nonlinear transfo_rmaﬂpn, here called q=3x10"’j\ M\l J/\“L o
the regularized resolvent transfornof the time signal to the -
frequency domain. Unlike most other nonlinear high-resolution
spectral estimators, RRT is very stable, computationally very. AN
inexpensive, and has adjusting parameters that are very,

) . RT, N=24K
straightforward to use. These parameters Kgg and 9t de-

DFT, N=32K

fining the size and spacing of the Fourier basis in the frequency q-0 / J\
domain and the regularization parametgr Note thatK,,, J}¥ J\‘ A\ M
could in principle be as small as 3, although a larggr, q=6x10" f\
Wi
generally improves the resolution, while increasing the cpu J L /\ — J/VL ‘L —
time according to the cubic scaling of a linear solver. Fore.o 20.0 24.0

SUffICIemly Iarge Kwins Whlch IS usua”y less than 100, the FIG. 1. “Jacob’s ladder” absorption spectra obtained by processing a
results do not change noticeably. This,, can be chosen model time signal (see text) by the regularized resolvent transform (RRT) an
according to how long one would like to wait for the spectruriFT using different signal size®y = 32,000 andN = 24,000. The RRT
to be computed. The choice for the basis density parantgter,spectra have higher resolution than the FFT spectrum Mith 32,000, but

. . the nonregularized spectrg € 0) may be somewhat nonuniform. An increase
between 1.1 and 1.2 usua“y works well if a Smgle scale ba%ltsthe regularization parametegrgenerally leads to a more uniform spectral

(as opposed to a multiscale bas#)(is used. estimate and gradual decrease of resolution, although the best result is oft
The spectrum (s) computed by RRT withg = 0 should obtained using RRT with some smajl> 0.

generally be indistinguishable from that computed by a previ-
ous version of FDM §) based on solving the generalize

eigenvalue problem, Eq. [16]. However, fqr> 0 they will but rather to the normalization of thé-matrices.)

differ as demonstrated in the following model example. The lower two traces show RRT spectra ushhg: 24,000,

The exampl_e, call_ed “Jacqb’s ladder” (Fig. 1)_' was borrowqga” in the regime where the method fails to resolve the nar
from Ref. (L0) in which the signal was synthesized by Eq. [3lowest triplets in the spectral region because the signal lengt

”Si_”g a set of 50 triplets V\_’ith both the _peak widths and the 1,4 short. The resolution failure for= 0 manifests itself in
splittings gradually decreasing from the right to the left, allowg quite nonuniform appearance of the peaks in the multiplets

ing examination of the breakdown of the resolution for any, harticular, only two peaks appear in the left-most triplet with
flxed_5|gnal size. The assumed spectral width was 5 kHzZ Wighe smallest spacings. By increasiggone can make them
the right-most triplet at 2500 Hz and the left-most at 14 Hznore uniform and sometimes improve the resolution (e.g., not
The signal was normalized to an initial valag0) = 16,384  the triplet at~22 Hz). That is, for short data sets the RRT
and then integerized by taking the closest lower integer fagjls” in a controllable fashion (as is the case for FFT), while
eachc(n7) in order to mimic the ADC. The spectral regionypically providing a higher resolution than FFT for narrow
shown has very small splittings and so is hard to resolve. Thgrentzian lines.

upper trace is the exact spectrum that could be obtained byt js important to note here a subtlety present in all linear
RRT using, for exampleN = 48,000data points. The FFT algebraic algorithms, in particular, in FDM and RRT, related to
spectrum usingN = 64,000cannot resolve all the triplets inthe fit of the time signal by damped sinusoids, Eq. [3]. For
this region, while using FFT witfN = 32,000 does not example, in RRT the derivation of Eq. [4] assumes conver-
resolve any of them. In addition, one can see some baseli#hce of the infinite geometric serig§_, (=U)". However,
ringing that is not completely removed by apodization of thghis assumption may be ambiguous since only a finite part o
FID. The RRT result usindN\ = 32,000 andg = O is very the data is available. Numerically, when evaluated in a finite
close to the exact result, although some amplitudes are slighilysisU may have eigenvalues, = e '™ outside the unit
inaccurate. Interestingly, one can control the appearance of thele, corresponding to the negative “widtly; = —Im{ w,}.
RRT spectrum by tuning. An increase off makes the spectral If, at the same time, thd, is small there is no problem.
estimation more uniform while decreasing the resolution. Now consider two dangerous cases.

d(Note that the scale fay is not related to the frequency scale,
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~ to shift the argument df(s) by iI" with I' > —+, i.e., construct

I I(s + i) which effectively flips the negative width. The

N result of such a shift is demonstrated in the third trace of Fig
3 where all the peaks have the correct sign, but are slightl
broadened.

IR | 7:\\\\“ ﬁi W
I i 3. 2D RRT

v=0.1Hz =001z | =-001Hz | =-0.1Hz The generalization of the 1D RRT to the multidimensional
' 1‘ case is reminiscent to the derivations in Refd, (12, except
FIG. 2. The real (absorption) and imaginary (dispersion) parts of the RRt"ere we completely aV_OId even m_entlor_ung the Hamiltoniar
spectrumi (s) = di/(1 — €9 for a single line as a function of its “width” OPerators. Since there is only a minor d|_ﬁere_n_ce betwee_n th
v = —Im{ ,}. The sign of the absorption peak is flipped whgehanges its 2D RRT andD > 2 RRT, for the sake of simplicity we restrict
sign, while the appearance of the dispersion peak only depends on the abs@jiie presentation to thB = 2 case.
value ofy. To this end, given a 2D time signe{n,,, n,7,) defined on
an equidistant rectangular time grid, our goal is to estimate th

) ~ 2D (infinite time) discrete Fourier sum,
(i) Both d, and+y, < O are large. Even though the signal

c(nT) is expected to decay at large enough times, this problem

— absorption
- -- dispersion

can arise as an artifact of a local spectral analysis caused by a =

narrowband Fourier basis that in turn does not describe the I(sy, ;) = >, >, eMmnsiginzzs:

spectral features outside the chosen spectral region. (Note that n=0 n2=0

with multiscale basis§) such poles do not occur.) Surpris- Snio o

ingly, even though they have nothing to do with the true X ¢(ny7y, n272)<1 i )(1 - ) [23]

spectral parameters, the poles with both large positive imagi-

nary parts and large amplitudes correctly describe the back-

ground spectrum in the chosen interval if Eq. [15] is used. bsing only the finiteN,; X N, part of the signal.

Eq. [15] the large contributions from broad, interfering poles The 1D assumption of Eq. [2] is generalizet3(14 by

cancel each other. using two commuting complex symmetric evolution operators
(i) The true width of a peak is very small, or zero as in &, andU,,

constant-time experiment, making it likely (because of numer-

ical errors or noise) to havg, < 0. This in turn results in a flip

of the sign of the absorption part of the peak as shown in Fig. b .. dispersion |

2. Note, though, that the sign of the dispersion part is unaf-= ) ——  absorption,

i)
|

\,‘{‘\7\* S

/

fected. This property of the RRT lineshapes can be easily-~ =" —7~f~ apoT— T
understood by considering the behaviorl@) (see Eq. [8]) 500 o
near an eigenfrequeney = w, — iv, i.e., assuming(s — o ¥
< a and then extracting the real and imaginary parts of the, RRT, =00 /N/:&\{;\% u JU:W;\-_,, 7
complex Lorentzian as e e e T e
RRT, T=1.0 Hz Ll o
dk oo 7_»)J{‘J\\:,; e o 777,,/9;/\'\\\:';'———,;

(8) ~ T —oiew

id, 1 e g
T s-ow 1760.0 R 2000.0 Hz
id, (s— w,) iy FIG.3. Anexample of a failure of the RRT spectral representation with no

2] . [22] shiftand no regularization implemented (second trace, §eth0 andl” = 0).
Because the signal used to construct the spectrum is too short in length, bo
the amplitudes and the widths of the peaks are quite inaccurate. In particula

In FDM and other parameter estimators the negative sign oPne peak appears with the wrong sign (note that the appearance of all tt

can simply be flipped to lead to the correct appearance of ﬂiigaersion-mode peaks is correct). The wrong absorption peak is flipped b
tting I (s + iT") (the lowest trace) instead ofs) with I' = 1 Hz. Note that

. L. . . . plo
peak in the phase-sensitive spectrum. Slnc_e in RRT the ng%@-procedure replaces the widih — — Im{ w} of each peak by, + T, i.e.,
values are not computed, one cannot manipulate these in @fctively fixes the signs of all peaks withl' < v, < 0 and broadens all the
simple fashion. One way to circumvent this problem in RRT iseaks with the (correct) positive,.

_T (S_wr)2+'yz (s_wr)2+7
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c(ny7, Ny7y) = (P UT0 Pd). [24] For convenience define three auxiliary data sets,

Inserting Eg. [24] into Eq. [23] and evaluating the geometric co(Ny, Ny) = c[Ny7y, NuTyl,

sums analytically gives
cy(ny, ny) = c[(ny + 1) 7y, Ny7y],

1 1 C,y(ny, Ny) = c[ny7y, (N, + 1)7,]. 31
|(51, 52) = (q)o {1 — eiTlSlol - 2} 2( ' 2) [ i ( ’ )72] [ ]
1 1 The matrix elements of thd-matrices for bothp,; # ¢, and
{1—e"25202 - 2} (D0> [25] ¢, # @, can be computed by
The 2D Krylov basis is U] 5 Y gloiMimalen = ¢y)+ ]
i = 1— ein((mj'*q:u)
~ ~ 01=0,1
®, ,, = UTUYXD,, 26 '
nunz 12 o [ ] . @i Mar2(er —¢2) + ]
X -
Wlth I"Il = 0, 1, PP !Ml - 1, anan = 0, 1, e ,M2 - 1, SZ U'Z:EO,J. 1 - eITZ((PZJV7‘P2])
and the total sizé/l; X M, = N;/2 X N,/2 defined by the
signal size (01+1)(M1—1) (02+1)(M2—1) . .
. 101 22j
A 2D Fourier basis is introduced by defining a 2D grid in the x ] EM ) EM emeet e (ny, ny),
frequency domaind,, ¢;), j = 1, 2, ... K,y that spans Com e
only a small region around the reference poist, (s,). A (32]

convenient choice corresponds to a direct product grid with
Kuwin = Kiwin X Koy in which the spacing between the gridwhereS, andS, define the symmetrization operators over the
points in anlth dimension is defined according to Eq. [10]. corresponding pairs of variables as, e.g.,

Thus, we have

Mi1 Mo 1 ASlQ(‘Plja @1) = 9(@1j, @17) + (g, @1)- [33]
D= > > emmenghag, [27]
n=0 nz=0 For ¢y; = @y andey # ¢y we have

Now evaluating Eq. [25] in the 2D Fourier basis we obtain gioAMzralea 02) + 7]

the resolvent transform analogous to Eq. [15], U], = 5 > o
o2=0,1
i e . 2M1-2 (o2+1)(M2—1)
I(s1, s) = C {Rl(sl) UoR2(s,) % z einupljeinz(pzjcl(nl, n,)
~ ~ n1=0 n2=o02M2
Ri(s) '+ Ry(sp) "« ¢(0,0)
- 2 C+ 4 ’ [28] X (Ml_ ’Ml_nl_ 1‘)1 [34]
with which can trivially be rewritten for the symmetric case of
@1 F @y andey = @y For the case of botlpy; = ¢4 and
) Mi-1 Mz—1 ¢y = @y, i.e., the diagonal elements of théematrices, we
[Cl= > > eMmmememeac(nyry, n,r,),  [29] have
ni=0 n2=0

2M1—2 2M2—2
and [Ull; = > > emengineag(ng, ny)

ni=0 n2=0
X (My = My = n; = 1)(M;, — [M, — n, — 1]).
[35]

Ri(s) =0,—e™0, |=1,2. [30]

The expressions to evaluate the overlap maity, and the
matrix representations of the evolution operatdis,and U,
were derived previouslyl@) and are given below without A 2D RRT can be obtained by regularizing the two resol-
derivation. vents in Eq. [28], leading to



RRT: THE REGULARIZED RESOLVENT TRANSFORM 135

- I c(0, 0) construct various nonanalytic spectral representations, suc

181, 52) = X(51) UoX (sy) + 4 as a double-absorption spectrufil) using a single purely
- - phase modulated 2D signal due to the availability of the

_ QT X(sy) + X(sp) [36] eigenfrequencie®,, and w,.. Furthermore, in FDM inac
2 ' curacies in determining the imaginary parts of the compute
frequencies, in particular, their signs, can be corrected (se
with the two frequency-dependent vectotgs,), | = 1, 2, above). In RRT no spectral parameters are produced ant
computed by solving the regularized Hermitian least squaréwerefore, the artifacts are removed by regularization with &

problems, finite value of g and/or by shifting the spectrum using

I(s, + il'y, s, + iI',) with shifting parameter$’;, andI’, so
that the spectrum is always smoothed somewhat.

In the next example we apply 2D RRT to a frequently
. employed 2D experiment to correlate proton and nitrogen-1!
Note that the total number of the linear systems to be solved {Qfemical shifts. The 2D shift correlation spectra of the nitro-
each 2D frequency window is equal b, + N, whereN,, 5o 15 |aheled metalloprotein rubredoxits) shown in Fig. 4
andN,, are the numbers of the frequency grid poistsands,, ;¢ particularly favorable for FFT analysis because a phase
to plot the spectrum in the window. sensitive spectrum can be computed and the peaks are

Derivation of the 2D RRT is the main result of this paper. Itgimilar intensity, so that a poorly resolved intense peak doe

{)hotete;gallzgsﬂvairr:t?g: ;gimsat:)egrgocgi t2h[()e ?vizlgg;glzg tr?ot mask a weaker feature nearby. Nevertheless, RRT yields

. . : o . welcome improvement in resolution or a decrease in the ex
simultaneously, thus converting the time domain information

into the frequency domain with minimal loss. Unlike the 2 eriment time for a similar resolution. As in FDM, the gain in
FDM, in RRT we do not directly refer to the 2D harmonicresolution hinges on the spectrum having sufficient signal-to

inversion problem, noise ratio. It is neither po_SS|bIe t_o_lmprove the resolution of
noisy spectra, nor to magically divine the presence of peak

buried in noise.

(Ri(s)"Ri(s) + q2)>~(|(5|) = R(s)'C. [37]

K

c(Ny7y, Noy) = ) dye Mmeng ~inzrzon [38]
k=1 3.1. Other Spectral Representations using RRT

ithouah th hod loselv related. | . When severely truncated data sets are used in RRT, just lik
although the two methods are very closely related. In particil; FDM, the positions of the peaks converge best, while the

lar, if Fh.e form of (Eq. [38]) s satisfied, the RRT spectrum fo;r:)hases of the amplitudes are least accurate. This may, in tur
a sufficiently large data set processed should converge to

lead to incorrect lineshapes in phase-sensitive spectra. Mor
over, in certain situations only a single purely phase modulate

c(0,0 X d, data set is available (e.g., 2Dexperiments). In such cases an

I(sy, 8) =, + > > absolute-value RRT spectrum may be an option, although th
k=1 resolution of the latter may often be unacceptable due to th

2 contribution of the dispersion lineshapes. Note, though, the

X {[1 s e[ — g o] existence of a variety of other spectral representations, i

which the dispersion contributions are eliminated, and which
B 1 B 1 [39] therefore, lead to much higher resolution. An example of sucl
[1—enEew]  [1 — ginls o] a representation in 2D spectroscopy is

Ideally, the results should fully converge if the total size of the

data set satisfies the conditidf,, = N; X N, = 4K, no A(sy, s2) = Re{l(sy, 5, + 1) = I(sy, 5, + i)} [40]

matter whetheilN, or N, are small. This, of course, does not

take into account noise, degeneracies, and round-off errors

which could affect the convergence conditions significantly.The dispersion contributions alorgy are eliminated by the
Due to its numerical stability, robustness, and ease sfibtraction of the two complex spectra using different shifts

implementation, RRT has an advantage over FDM, onde # I'; (with possibly positivel’, and negativel’;), while

only complex1D or 2D spectra,as defined by Egs. [1] andtaking the real part leads to the absorption lineshapes alpng

[23], are of interest. However, an advantage of FDM, esp&he disadvantage of Eq. [40] is the need to fiddle with too

cially in the multidimensional case, lies in the ability tamany adjusting parameters.
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FIG. 4. Chemical shift correlation spectra of the metalloprotein rubredoxin obtained with gradient selection of the coherence transfer pathwayeEach
double-absorption spectra were generated using the conventional procedure that combines theNoaru&xtype spectra.

Another possible spectral representation is given by using|l®(s, + il'y, s, + il',)| with T'; = 1 Hz andl", = 10

1 @(sy, s55) = <q)o

1
- = - = [}
[1 _ el.—lslul] 2[1 _ elrzszuz]z 0)

Hz applied to the same 2D signal as in Fig. 4. The peaks d
have absorption lineshapes, although the heights are somewt
distorted when compared to the correct spectra of Fig. 4
Clearly, many other spectral representations of this type ar

K dk
= E [1 _ ein(srwlk)] 2[1 _ eiTz(Sz*wzk)]Z’

k=1

[41]

600 ~

in which the peaks are narrow and have quasi-absorption
lineshapes if the absolute value spectrliffi(s,, s,)| is plot
ted. That is|l®(s,, s,)| will have a great resolution advantage
over|l(sy, S,)|. Note, also, that an amplitudk is not squared, 0
although the peak integral will effectively be divided by the
factor Im{wy}Im{ w4}, defined by the two widths. That is,
1®(s,, s,) will favor the narrow peaks against the broad ones.
As before, these effects can be reduced by shifting the spec-
trum using [|?(s, + i}, s, + il';)| which effectively
increases the widths of all peaks, making them more uniform.
While 1?(s,, s,) cannot be constructed by FT, it is repre _ _ _
FIG. 5. RRT pseudo-absorption spectrdhf(s, + iy, s, + il',)| (see

sentable in terms of the-matrices in _complete analogy with Eq. [41]) constructed using only thé-type (i.e., the purely phase modulated)
Eq. [28]. Of course, the corresponding resolvents should §&a of Fig. 4 withN, = 16, N, = 300,q = 0.0003,I'; = 2 Hz, andl’, =

regularized accordingly. In Fig. 5 we show the RRT spectuaHz. B

400

200

-200

-400

-600

T T T T T lj T

600 400 200 0 -200  -400 -600
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available, each of which can have their own advantages ar?d M. R. Wall and D. Neuhauser, Extraction, through filter-diagonal-
disadvantages. ization, of general quantum eigenvalues or classical normal mode
frequencies from a small number of residues or a short-time seg-
ment of a signal. I. Theory and application to a quantum-dynamics

4. SUMMARY model, J. Chem. Phys. 102, 8011-8022 (1995).

We have presented new numerical expressions for hi ﬁ; V. A. Mandelshtam and H. S. Taylor, Harmonic inversion of time
Ve p w-nu ! xp ! 9 signals and its applications, J. Chem. Phys. 107, 6756-6769

resolution spectral estimation of multidimensional time sig- (1997).

nals. Under the condition that the data exaCtly fits the Loremﬁ. R. O. Schmidt, Multiple emitter location and signal parameter es-
zian assumption, RRT possesses the optimal property of beingtimation, Proc. RADC Spectrum Estimation Workshop, pp. 243—
able to produce the exact infinite time DFT spectra using only 258, Griffiss AFB, New York, 1979.

a finite and small portion of the time domain data. 5. J. Tang and J. R. Norris, LPZ spectral analysis using linear predic-
The main advantages of RRT are the following. (i) It is a tion and the z-transform, J. Chem. Phys. 84, 5210-5211 (1986).
direct transformation of the time domain data into the fre6. s. D. Silverstein and M. D. Zoltowski, The mathematical basis for
quency domain spectrum. (i) Unlike most other nonlinear element and Fourier beamspace MUSIC and root-MUSIC algo-

spectral estimators, it is easy to use. There is no need to fiddleithms. Dig. Signal Process. 1, 161-175 (1991).
much with the adjusting parameters as the results Onw D. Belkic, P. A. Dando, H. S. Taylor, and J. Main, Decimated signal
smoothly depend on them. (iii) Unlike the multidimensional diagpnalization for obtaining the complete eigenspectra of large
versions of FDM, in RRT the regularization can be imple- matrices, Chem. Phys. Lett. 315, 135_1,39 (1999)' , o
mented in a very straightforward fashion. The regularizatioff J: €hen and V. A. Mandelshtam, Multiscale filter diagonalization
. method for spectral analysis of noisy data with nonlocalized fea-
parameteq unambiguously controls the spectral appearance: a tures, J. Chem. Phys. 112, 44294437 (2000).
Iarger value qu SyStematlca".y .SUppresseS the. artifacts anq. A. Tikhonov, Solution of incorrectly formulated problems and the
small spectral features, providing a more uniform spectral oqyjarization method, Soviet Math. Dokl. 4, 1035-1038 (1963);
estimate, albeit with decreasing resolution. G. H. Golub and C. F. van Loan, “Matrix Computations,” Johns
Although FDM and RRT are very closely related, RRT, after Hopkins Univ. Press, Baltimore, 1989.
the regularization, loses the structure that was present origh: H. Hu, Q. N. Van, V. A. Mandelshtam, and A. J. Shaka, Reference
nally in FDM, which allows one to obtain a pa_rametric de- deconvolution, phase correction and line listing of NMR spectra by
scription, i.e., a direct line list. The inability to provide a line  the 1D filter diagonalization method, J. Magn. Reson. 134, 76-87
list seems to be the main disadvantage of RRT. This, in (1998).
particular, makes it difficult to obtain spectral representatiortd: V: A- Mandelshtam, N. D. Taylor, H. Hu, M. Smith, and A. J. Shaka,
(e.g., a double-absorption spectrum from a purely phase mod- Highly resolved double absorption 2D NMR spectra from C_omplex
. | severely truncated 2D phase modulated signals by filter-diagonal-
ulated data) that are d|ffer§nt from th_e _Coﬂvennonal DFT. ization-averaging method, Chem. Phys. Lett. 305, 209-216 (1999).
Therefore, FDM has, in pr|n0|ple, fewer limitations both on th?z. V. A. Mandelshtam, The multidimensional filter diagonalization
type of data to be processed and on the spectra to be CON-method. I. Theory and numerical implementation, J. Magn. Reson.
structed. These issues will be explored in more detail in our 144, 343-356 (2000).

forthcoming publications. 13. V. A. Mandelshtam and H. S. Taylor, Multidimensional harmonic
inversion by filter-diagonalization, J. Chem. Phys. 108, 9970-9977
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