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A new numerical expression, called the regularized resolvent
transform (RRT), is presented. RRT is a direct transformation of
the truncated time-domain data into a frequency-domain spec-
trum and is suitable for high-resolution spectral estimation of
multidimensional time signals. One of its forms, under the condi-
tion that the signal consists only of a finite sum of damped
sinusoids, turns out to be equivalent to the exact infinite time
discrete Fourier transformation. RRT naturally emerges from the
filter diagonalization method, although no diagonalization is re-
quired. In RRT the spectrum at each frequency s is expressed in
terms of the resolvent R(s)21 of a small data matrix R(s), that is
onstructed from the time signal. Generally, R is singular, which
equires certain regularization. In particular, the Tikhonov regu-
arization, R21 ' [R†R 1 q2]21R† with regularization parameter q,

appears to be computationally both efficient and very stable. Nu-
merical implementation of RRT is very inexpensive because even
for extremely large data sets the matrices involved are small. RRT
is demonstrated using model 1D and experimental 2D NMR
signals. © 2000 Academic Press

1. INTRODUCTION

There is a certain attraction to the idea of atransform,that
onverts data from one representation to another, more u
epresentation. In the common case of Fourier transform
FT) a continuous function of timec(t) is transformed to

function of frequencyI (s), by performing, for instance,
Fourier integral. For each value ofs and signalc(t) we can
obtain a complex number that gives the local amplitudeI (s).
The simplicity and transparency of the transform mak
appealing even when, as in the discrete FT (DFT), the d
spectrum may deviate appreciably from the true integral
resentation (1).

By contrast, parametric methods that rely on fitting the
to a functional form are rather more complex in nature. T
typically rely on adjustable parameters to obtain satisfac
results and can be less user-friendly in operation. In this p
we bridge the parameter estimation approach to the tran
approach by introducing a new transform, the regular
resolvent transform (RRT). The RRT approach conv
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damped sinusoids in the time domain into Lorentzian line
the frequency domain, butwithoutany intermediate line list.
can be implemented efficiently and maintains the spirit of l
spectral analysis that can be lost in the quest to obtain a
parametric fit of an entire data set.

2. 1D RRT

In this section we consider a 1D spectral analysis pro
which has been previously treated by a variety of methods
is well understood. However, the expressions derived her
generalized to the less well explored multidimensional ca
the next section.

Given a discrete equidistant time signalc(nt), our goal her
is to estimate its infinite time DFT,

I ~s! 5 O
n50

`

c~nt!eintsS1 2
dn0

2 D , [1]

but using only a finite portion of the data withn 5 0, 1, . . .
2 1. The term (12 d n0/ 2) in Eq. [1] multipliesc(0) by 1

2

to correct the error introduced by the discrete sum approx
tion of the continuous half-line Fourier integral.

The assumption used here to derive the linear alge
expressions is due to Wall and Neuhauser (2) in whichc(nt) is
associated with a time autocorrelation function of a fictit
quantum system for some fictitious initial stateF0,

c~nt! 5 ~F0uÛ nF0!, [2]

where we used the round brackets for the symmetric
Hermitian) inner product, (CuF) 5 (FuC). The effective evo
lution operatorÛ may be nonunitary but is assumed to
ymmetric with respect to the inner product, i.e., (ÛCuF) 5

(CuÛF).
The assumption that the evolution operatorÛ has a finite

rank K turns to be equivalent to assuming that the signa
1090-7807/00 $35.00
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130 CHEN, SHAKA, AND MANDELSHTAM
question can be represented as a sum of exactlyK complex
sinusoids (2),

c~nt! 5 O
k51

K

dke
2intvk, [3]

ith nondegenerate and generally complex frequenciesv k and
complex coefficientsdk. In Refs. (2, 3) the filter diagonaliza-
tion method (FDM) was developed to compute those freq
cies and coefficients by essentially diagonalizingÛ in a specia
basis. It was, in particular, noted (3) that a signal with total siz
N 5 2K yields exactlyK pairs (v k, dk). These can then b
used to evaluate the spectrumI (s). We do not recast th
spectral estimation problem into one of calculating the spe
parameters (2, 3), not because the latter fails, but rather
ause the present approach leads to very elegant and n
ally efficient direct signal transformation which may be
antageous in certain contexts. It is also interesting th
pectrum, very similar to that obtained with FDM, may
onstructed without ever determining any spectral param
Substituting Eq. [2] into Eq. [1] and evaluating the geom

ic sum analytically we obtain

I ~s! 5 SF0U H 1

1 2 eitsÛ
2

1

2JF0D . [4]

Equation [4] cannot be used directly for calculatingI (s) as
we still need to obtain a matrix representation of the auxi
objectsÛ andF0 in terms of the known datac(nt). To do so
as in Ref. (3), we introduce an auxiliary (Krylov) basis,

Fn 5 Û nF0, n 5 0, 1, . . . ,M 2 1. [5]

According to our assumption, the rank ofÛ is K, so that the
M # K Krylov vectorsF n are generally linearly independe
and we can rewrite Eq. [4] by evaluating everything in
basis:

I ~s! < C TR~s! 21C 2
c~0!

2
, [6]

with R(s) 5 U0 2 eitsU1, where the evolution operator and
overlap matrix elements are defined as, respectively, [U1] nn9 5
(F nuÛF n9), [U0] nn9 5 (F nuF n9), and the coefficients of th
1 3 M column vectorC are [C] n 5 (F nuF 0). It is not hard to
ee (3) thatU1, U0, andC are all representable in terms of

signal data pointsc(nt) as

@Up#nn9 5 c@~n 1 n9 1 p!t#, p 5 0, 1

@C# 5 c~nt!. [7]
n
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Rather surprisingly, Eqs. [6] and [7] are working exp
sions. In the case that Eq. [3] is exactly satisfied, Eq. [6] y
the exact infinite time Fourier spectrum,

I ~s! 5 O
k51

K dk

1 2 eit~s2vk! 2
c~0!

2
, [8]

if we chooseM 5 K, even though only a finite part of t
signal c(nt) of size N5 2M is used and the spectral para
etersv k and dk are not computed.The result is also exact
M . K, although in this case the set of vectorsF n is linearly
dependent, requiring evaluation of a pseudo-inverse o
singularM 3 M matrix R(s). For example, the singular val
decomposition (SVD) ofR(s) could be used. In practice me
sured data contains some noise, so the matrices are not e
singular, although they could still be very ill-condition
implying that some kind of regularization will often be adv
tageous. We will revisit this issue later in the paper.

Our result is also interesting because it is reminiscent o
method referred to as MUSIC (multiple signal classificati
In MUSIC, a pseudo-spectrum is constructed by evaluat
certain pseudo-inverse of a data matrix (4). Note that unlike th
present approach, the MUSIC spectrum is only usefu
finding the unknown complex frequenciesv k and so is no
useful for NMR applications. Another approach, LPZ (lin
predictionz-transform) (5), is a variant of the LP method
which the infinite-time Fourier spectrum is estimated dire
from the data matrix inversion (more precisely, from the
coefficients). However, LPZ has an unfavorableN3 numerica
scaling with respect to the data sizeN and is not commonl
used. Just like LPZ, Eq. [6] is numerically also very expen
for realistic data sets. Fortunately, this problem can be cir
vented by performing the spectral analysis locally in the
quency domain. The FDM approach (2, 3) is similar in spirit to
that commonly used in the engineering literature and know
“beamspacing” (see, e.g., Ref. (6). Also see Ref. (7) related to
the present context). Here a basis localized in the frequ
domain is obtained by Fourier transformation of the Kry
basis {F n},

F̃ j 5 O
n50

M21

eintw jFn, j 5 1, 2, . . . ,Kwin, [9]

where here and throughout the rest of the paper the
identifies the use of the Fourier basis. The valuesw j could be

venly spaced using

Dw 5
2p

NMt
. [10]

For N 5 1 andK 5 M the transformation from the Krylo
win
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131RRT: THE REGULARIZED RESOLVENT TRANSFORM
basis {F n}, to the Fourier basis {F̃ j} is unitary. However, a
argued first in Ref. (2) and later in (3), it is advantageous to u
a local basis of small sizeKwin ! M with N . 1 (e.g.,N 5
1.1). It could be even more efficient to usemultiscale basis(8)
corresponding to a nonuniform distribution ofw j ’s with j -

ependent Fourier lengthM 5 Mj in Eq. [9], which describe
a very narrow frequency window in high resolution and the
of the spectrum, in low resolution, while having minim
overall size.

One can now use the new Fourier basis, Eq. [9], to re
uate the matrices in Eq. [7], which after some manipulat
(3) leads forj Þ j 9 to

@Ũp# jj 9 5 Ŝ O
s50,1

eis@tM~w j 92w j!1p#

1 2 eit~w j 92w j!

3 O
n5sM

~s11!~M21!

eintw jc@~n 1 p!t#, [11]

hereŜ defines symmetrization operator over the variablew j

andw j 9,

Ŝg~w j, w j 9! 5 g~w j, w j 9! 1 g~w j 9, w j!. [12]

or j 5 j 9 one has

@Ũp# jj 5 O
n50

2M22

eintw j~M 2 uM 2 n 2 1u!c@~n 1 p!t#. [13]

Now by evaluatingC in the Fourier basis,

@C̃# j 5 O
n50

M21

eintw jc~nt!, [14]

we can rewrite Eq. [6] as

I ~s! < C̃ TR̃~s! 21C̃ 2
c~0!

2
, [15]

with R̃(s) 5 Ũ0 2 eitsŨ1.
Due to the very nature of the Fourier transformation

spectral properties around some frequencys are completel
defined by a very small subspace {F̃ j} of size Kwin (e.g.,
Kwin 5 10) with w j ; s. Therefore, only a smallKwin 3 Kwin

matrix R̃(s) has to be inverted in Eq. [15] to yield a we
converged spectrumI (s).

Clearly, evaluation of Eq. [15] can be done for all value
s within a chosen frequency window, once the correspon
generalized eigenvalue problem,
st

l-
s

e

f
g

Ũ1B̃k 5 ukŨ0B̃k, [16]

is solved for the eigenvaluesuk and eigenvectorsB̃k. Although
this method might seem preferable to any other alternativ
note that Eq. [15] can also be evaluated directly, for exam
by solving the associated linear system,

R̃~s!X̃ ~s! 5 C̃, [17]

nd then using

I ~s! < C̃ TX̃ ~s! 2
c~0!

2
. [18]

In the 1D case the latter approach, Eqs. [17] and [18],
actually appear computationally efficient if the spectrum
be evaluated at relatively few values ofs. This will be even
more so in the case ofD 5 2 and higher dimensionality.

A less obvious issue is the stability and robustness o
algorithm. The matrixR̃(s) may be very ill-conditioned, so i
inversion or use in Eq. [17] requires some kind of regular
tion. One possibility is to use SVD ofR̃(s) to calculate
pseudo-inverse by discarding the singular subspace. How
SVD, if applied for each value ofs, would be quite computa
tionally expensive. A much less expensive regularization o
resolvent can be obtained using the Tikhonov regulariz
(9),

I ~s! < C̃ T~R̃~s! †R̃~s! 1 q2! 21R̃~s! †C̃ 2
c~0!

2
, [19]

where the dagger denotes the Hermitian conjugate, andq is a
real number. With such a regularization the singularity in
denominator is removed as (R̃†R̃ 1 q2) is a Hermitian an
positive definite matrix.

Equation [19] can be evaluated by solving the regular
Hermitian least squares problem,

~R̃ †~s!R̃~s! 1 q2!X̃ ~s! 5 R̃ †C̃, [20]

and then using Eq. [18].
It should be noted that the expensive matrix–matrix m

plication R̃(s) †R̃(s) in Eq. [20], which is aKwin
3 process, doe

not have to be performed at each value ofs. Significan
numerical saving can be achieved by using

R̃~s! †R̃~s!

5 Ũ 0
†Ũ0 1 Ũ 1

†Ũ1 2 e2itsŨ 1
†Ũ0 2 eitsŨ 0

†Ũ1. [21]

Generally, solution of a linear system scales also asKwin
3 ,

however, one can solve Eq. [20] iteratively at eachs by, e.g.
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132 CHEN, SHAKA, AND MANDELSHTAM
a conjugate gradient method, which may have much b
scaling, thus significantly reducing the overall numerical ef
These issues will be explored in more detail in our forthcom
publications.

The spectral estimation given by Eq. [19] (or [18, 20]) is
of the main results of this paper. Operationally it has a stat
“transform” (like FFT), while a “method,” e.g., the filter d
agonalization method, would refer to a procedure that w
generally be less obvious to use. More precisely, Eq.
corresponds to a direct nonlinear transformation, here c
the regularized resolvent transform,of the time signal to th
frequency domain. Unlike most other nonlinear high-resolu
spectral estimators, RRT is very stable, computationally
inexpensive, and has adjusting parameters that are
straightforward to use. These parameters areKwin and N de-
ning the size and spacing of the Fourier basis in the frequ
omain and the regularization parameterq. Note that Kwin

could in principle be as small as 3, although a largerKwin

generally improves the resolution, while increasing the
time according to the cubic scaling of a linear solver.
sufficiently largeKwin, which is usually less than 100, t
results do not change noticeably. Thus,Kwin can be chose
according to how long one would like to wait for the spect
to be computed. The choice for the basis density parametN,

etween 1.1 and 1.2 usually works well if a single-scale b
as opposed to a multiscale basis (8)) is used.

The spectrumI (s) computed by RRT withq 5 0 should
enerally be indistinguishable from that computed by a p
us version of FDM (3) based on solving the generaliz

eigenvalue problem, Eq. [16]. However, forq . 0 they will
differ as demonstrated in the following model example.

The example, called “Jacob’s ladder” (Fig. 1), was borro
from Ref. (10) in which the signal was synthesized by Eq.
using a set of 50 triplets with both the peak widths and
splittings gradually decreasing from the right to the left, all
ing examination of the breakdown of the resolution for
fixed signal size. The assumed spectral width was 5 kHz
the right-most triplet at 2500 Hz and the left-most at 14
The signal was normalized to an initial valuec(0) 5 16,384
and then integerized by taking the closest lower intege
eachc(nt) in order to mimic the ADC. The spectral regi
shown has very small splittings and so is hard to resolve
upper trace is the exact spectrum that could be obtaine
RRT using, for example,N 5 48,000data points. The FF
pectrum usingN 5 64,000cannot resolve all the triplets
his region, while using FFT withN 5 32,000 does no
esolve any of them. In addition, one can see some bas
inging that is not completely removed by apodization of
ID. The RRT result usingN 5 32,000 andq 5 0 is very
lose to the exact result, although some amplitudes are sl
naccurate. Interestingly, one can control the appearance
RT spectrum by tuningq. An increase ofq makes the spectr
stimation more uniform while decreasing the resolu
er
t.
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Note that the scale forq is not related to the frequency sca
ut rather to the normalization of theU-matrices.)
The lower two traces show RRT spectra usingN 5 24,000

i.e., in the regime where the method fails to resolve the
rowest triplets in the spectral region because the signal le
is too short. The resolution failure forq 5 0 manifests itself i
a quite nonuniform appearance of the peaks in the multip
In particular, only two peaks appear in the left-most triplet w
the smallest spacings. By increasingq one can make the

ore uniform and sometimes improve the resolution (e.g.,
he triplet at;22 Hz). That is, for short data sets the R
“fails” in a controllable fashion (as is the case for FFT), w
typically providing a higher resolution than FFT for narr
Lorentzian lines.

It is important to note here a subtlety present in all lin
algebraic algorithms, in particular, in FDM and RRT, relate
the fit of the time signal by damped sinusoids, Eq. [3].
example, in RRT the derivation of Eq. [4] assumes con
gence of the infinite geometric series¥ n50

` (eitsÛ) n. However
this assumption may be ambiguous since only a finite pa
the data is available. Numerically, when evaluated in a fi
basis Û may have eigenvaluesuk 5 e2itvk outside the un
circle, corresponding to the negative “width”g k 5 2Im{ v k}.
f, at the same time, thedk is small there is no problem.

Now consider two dangerous cases.

FIG. 1. “Jacob’s ladder” absorption spectra obtained by process
model time signal (see text) by the regularized resolvent transform (RRT
FFT using different signal sizes,N 5 32,000 andN 5 24,000. The RR
pectra have higher resolution than the FFT spectrum withN 5 32,000, bu
he nonregularized spectra (q 5 0) may be somewhat nonuniform. An incre
f the regularization parameterq generally leads to a more uniform spec
stimate and gradual decrease of resolution, although the best result i
btained using RRT with some smallq . 0.
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133RRT: THE REGULARIZED RESOLVENT TRANSFORM
(i) Both dk and g k , 0 are large. Even though the sig
c(nt) is expected to decay at large enough times, this pro
can arise as an artifact of a local spectral analysis caused
narrowband Fourier basis that in turn does not describ
spectral features outside the chosen spectral region. (Not
with multiscale basis (8) such poles do not occur.) Surpr
ingly, even though they have nothing to do with the
spectral parameters, the poles with both large positive im
nary parts and large amplitudes correctly describe the b
ground spectrum in the chosen interval if Eq. [15] is used
Eq. [15] the large contributions from broad, interfering po
cancel each other.

(ii) The true width of a peak is very small, or zero as i
constant-time experiment, making it likely (because of num
ical errors or noise) to haveg k , 0. This in turn results in a fli
of the sign of the absorption part of the peak as shown in
2. Note, though, that the sign of the dispersion part is u
fected. This property of the RRT lineshapes can be e
understood by considering the behavior ofI (s) (see Eq. [8]
near an eigenfrequencyv 5 v r 2 ig, i.e., assumingtus 2 vu
! p and then extracting the real and imaginary parts o
complex Lorentzian as

I ~s! <
dk

1 2 eit~s2v!

<
idk

t

1

s 2 v

5
idk

t F ~s 2 v r!

~s 2 v r!
2 1 g 2 1

ig

~s 2 v r!
2 1 g 2G . [22]

n FDM and other parameter estimators the negative signg
can simply be flipped to lead to the correct appearance o
peak in the phase-sensitive spectrum. Since in RRT the e
values are not computed, one cannot manipulate these i
simple fashion. One way to circumvent this problem in RR

FIG. 2. The real (absorption) and imaginary (dispersion) parts of the
spectrumI (s) 5 dk/(1 2 eit(s2vk )) for a single line as a function of its “width
g 5 2Im{ v k}. The sign of the absorption peak is flipped wheng changes it
ign, while the appearance of the dispersion peak only depends on the a
alue ofg.
l
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to shift the argument ofI (s) by iG with G . 2g, i.e., construc
I (s 1 iG) which effectively flips the negative widthg. The
result of such a shift is demonstrated in the third trace of
3 where all the peaks have the correct sign, but are sli
broadened.

3. 2D RRT

The generalization of the 1D RRT to the multidimensio
case is reminiscent to the derivations in Refs. (11, 12), excep

ere we completely avoid even mentioning the Hamilto
perators. Since there is only a minor difference betwee
D RRT andD . 2 RRT, for the sake of simplicity we restr
ur presentation to theD 5 2 case.
To this end, given a 2D time signalc(n1t 1, n2t 2) defined on

an equidistant rectangular time grid, our goal is to estimat
2D (infinite time) discrete Fourier sum,

I ~s1, s2! 5 O
n150

` O
n250

`

ein1t1s1ein2t2s2

3 c~n1t1, n2t2!S1 2
dn10

2 DS1 2
dn20

2 D , [23]

using only the finiteN1 3 N2 part of the signal.
The 1D assumption of Eq. [2] is generalized (13, 14) by

using two commuting complex symmetric evolution opera
Û 1 and Û 2,

FIG. 3. An example of a failure of the RRT spectral representation wit
shift and no regularization implemented (second trace, bothq 5 0 andG 5 0).

ecause the signal used to construct the spectrum is too short in lengt
he amplitudes and the widths of the peaks are quite inaccurate. In par
ne peak appears with the wrong sign (note that the appearance of
ispersion-mode peaks is correct). The wrong absorption peak is flipp
lotting I (s 1 iG) (the lowest trace) instead ofI (s) with G 5 1 Hz. Note tha

this procedure replaces the widthg k 5 2Im{ v k} of each peak byg k 1 G, i.e.,
effectively fixes the signs of all peaks with2G , g k , 0 and broadens all th

eaks with the (correct) positiveg .

T

lute
k



tri
s

e
s

the
f s

wi
rid
].

tain

ut
d

w the

w of

sol-
v

134 CHEN, SHAKA, AND MANDELSHTAM
c~n1t, n2t2! 5 ~F0uÛ 1
n1Û 2

n2F0!. [24]

Inserting Eq. [24] into Eq. [23] and evaluating the geome
ums analytically gives

I ~s1, s2! 5 SF0U H 1

1 2 eit1s1Û1
2

1

2J
3 H 1

1 2 eit2s2Û2
2

1

2JF0D . [25]

The 2D Krylov basis is

Fn1,n2 5 Û 1
n1Û 2

n2F0, [26]

with n1 5 0, 1, . . . ,M 1 2 1, andn2 5 0, 1, . . . ,M 2 2 1,
and the total sizeM 1 3 M 2 5 N1/ 2 3 N2/ 2 defined by th
ignal size.
A 2D Fourier basis is introduced by defining a 2D grid in

requency domain (w 1j , w 2j), j 5 1, 2, . . . , Kwin, that span
only a small region around the reference point (s1, s2). A
convenient choice corresponds to a direct product grid
Kwin 5 K 1win 3 K 2win in which the spacing between the g
points in anl th dimension is defined according to Eq. [10

Thus, we have

F̃ j 5 O
n150

M121 O
n250

M221

ein1t1w1jein2t2w2jFn1,n2. [27]

Now evaluating Eq. [25] in the 2D Fourier basis we ob
the resolvent transform analogous to Eq. [15],

I ~s1, s2! < C̃ TH R̃1~s1!
21Ũ0R̃2~s2!

21

2
R̃1~s1!

21 1 R̃2~s2!
21

2 J C̃ 1
c~0, 0!

4
, [28]

with

@C̃# j 5 O
n150

M121 O
n250

M221

ein1t1w1jein2t2w2jc~n1t1, n2t2!, [29]

and

R̃ l~sl! 5 Ũ0 2 eit lslŨ l, l 5 1, 2. [30]

The expressions to evaluate the overlap matrix,Ũ0, and the
matrix representations of the evolution operators,Ũ1 and Ũ2,
were derived previously (13) and are given below witho

erivation.
c

th

For convenience define three auxiliary data sets,

c0~n1, n2! ; c@n1t1, n2t2#,

c1~n1, n2! ; c@~n1 1 1!t1, n2t2#,

c2~n1, n2! ; c@n1t1, ~n2 1 1!t2#. [31]

The matrix elements of theU-matrices for bothw 1j Þ w 1j 9 and
w 2j Þ w 2j 9 can be computed by

@U l# jj 9 5 Ŝ1 O
s150,1

eis1@M1t1~w1j 92w1j!1p#

1 2 eit1~w1j 92w1j!

3 Ŝ2 O
s250,1

eis2@M2t2~w2j 92w2j!1p#

1 2 eit2~w2j 92w2j!

3 O
n15s1M1

~s111!~M121! O
n25s2M2

~s211!~M221!

ein1w1jein2w2jcl~n1, n2!,

[32]

hereŜ1 andŜ2 define the symmetrization operators over
corresponding pairs of variables as, e.g.,

Ŝ1g~w1j, w1j 9! 5 g~w1j, w1j 9! 1 g~w1j 9, w1j!. [33]

For w 1j 5 w 1j 9 andw 2j Þ w 2j 9 we have

@U l# jj 9 5 Ŝ2 O
s250,1

eis2@M2t2~w2j 92w2j!1p#

1 2 eit2~w2j 92w2j!

3 O
n150

2M122 O
n25s2M2

~s211!~M221!

ein1w1jein2w2jcl~n1, n2!

3 ~M1 2 uM1 2 n1 2 1u!, [34]

hich can trivially be rewritten for the symmetric case
w 1j Þ w 1j 9 andw 2j 5 w 2j 9. For the case of bothw 1j 5 w 1j 9 and
w 2j 5 w 2j 9, i.e., the diagonal elements of theU-matrices, we
have

@U l# jj 5 O
n150

2M122 O
n250

2M222

ein1w1jein2w2jcl~n1, n2!

3 ~M1 2 uM1 2 n1 2 1u!~M2 2 uM2 2 n2 2 1u!.

[35]

A 2D RRT can be obtained by regularizing the two re
ents in Eq. [28], leading to
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I ~s1, s2! < X̃ ~s1!
TŨ0X̃ ~s1! 1

c~0, 0!

4

2 C̃ T
X̃ ~s1! 1 X̃ ~s2!

2
, [36]

ith the two frequency-dependent vectorsX̃ l(sl), l 5 1, 2,
computed by solving the regularized Hermitian least squ
problems,

~R̃ l~sl!
†R̃ l~sl! 1 q2!X̃ l~sl! 5 R̃ l~sl!

†C̃. [37]

Note that the total number of the linear systems to be solve
each 2D frequency window is equal toNs1 1 Ns2, whereNs1

andNs2 are the numbers of the frequency grid points,s1 ands2,
o plot the spectrum in the window.

Derivation of the 2D RRT is the main result of this paper
otential advantage compared to the 2D DFT is, similar

he 2D FDM, in the ability to process the whole 2D data se
imultaneously, thus converting the time domain informa
nto the frequency domain with minimal loss. Unlike the
DM, in RRT we do not directly refer to the 2D harmo

nversion problem,

c~n1t1, n2t2! 5 O
k51

K

dke
2in1t1v1ke2in2t2v2k, [38]

lthough the two methods are very closely related. In par
ar, if the form of (Eq. [38]) is satisfied, the RRT spectrum

sufficiently large data set processed should converge t

I ~s1, s2! 5
c~0, 0!

4
1 O

k51

K dk

2

3 H 2

@1 2 eit1~s12v1k!#@1 2 eit2~s22v2k!#

2
1

@1 2 eit1~s12v1k!#
2

1

@1 2 eit1~s22v2k!#J . [39]

Ideally, the results should fully converge if the total size of
data set satisfies the conditionNtotal 5 N1 3 N2 $ 4K, no
matter whetherN2 or N1 are small. This, of course, does
take into account noise, degeneracies, and round-off e
which could affect the convergence conditions significant

Due to its numerical stability, robustness, and eas
implementation, RRT has an advantage over FDM, o
only complex1D or 2D spectra,as defined by Eqs. [1] an
[23], are of interest. However, an advantage of FDM, e
cially in the multidimensional case, lies in the ability
es

or

s
o

n

u-
r

e

rs

of
e

e-

construct various nonanalytic spectral representations,
as a double-absorption spectrum (11) using a single purel
phase modulated 2D signal due to the availability of
eigenfrequenciesv 1k and v 2k. Furthermore, in FDM inac-
curacies in determining the imaginary parts of the comp
frequencies, in particular, their signs, can be corrected
above). In RRT no spectral parameters are produced
therefore, the artifacts are removed by regularization w
finite value of q and/or by shifting the spectrum usi
I (s1 1 iG 1, s2 1 iG 2) with shifting parametersG1 andG2 so
that the spectrum is always smoothed somewhat.

In the next example we apply 2D RRT to a freque
employed 2D experiment to correlate proton and nitroge
chemical shifts. The 2D shift correlation spectra of the n
gen-15-labeled metalloprotein rubredoxin (15) shown in Fig. 4

re particularly favorable for FFT analysis because a ph
ensitive spectrum can be computed and the peaks a
imilar intensity, so that a poorly resolved intense peak
ot mask a weaker feature nearby. Nevertheless, RRT yie
elcome improvement in resolution or a decrease in the
eriment time for a similar resolution. As in FDM, the gain
esolution hinges on the spectrum having sufficient signa
oise ratio. It is neither possible to improve the resolutio
oisy spectra, nor to magically divine the presence of p
uried in noise.

.1. Other Spectral Representations using RRT

When severely truncated data sets are used in RRT, jus
n FDM, the positions of the peaks converge best, while
hases of the amplitudes are least accurate. This may, in

ead to incorrect lineshapes in phase-sensitive spectra. M
ver, in certain situations only a single purely phase modu
ata set is available (e.g., 2DJ experiments). In such cases
bsolute-value RRT spectrum may be an option, althoug
esolution of the latter may often be unacceptable due t
ontribution of the dispersion lineshapes. Note, though
xistence of a variety of other spectral representation
hich the dispersion contributions are eliminated, and wh

herefore, lead to much higher resolution. An example of
representation in 2D spectroscopy is

A~s1, s2! 5 Re$I ~s1, s2 1 iG2! 2 I ~s1, s2 1 iG92!%. [40]

The dispersion contributions alongs2 are eliminated by th
subtraction of the two complex spectra using different s
G2 Þ G92 (with possibly positiveG2 and negativeG92), while
taking the real part leads to the absorption lineshapes alos1.
The disadvantage of Eq. [40] is the need to fiddle with
many adjusting parameters.
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136 CHEN, SHAKA, AND MANDELSHTAM
Another possible spectral representation is given by

I ~2!~s1, s2! 5 SF0U 1

@1 2 eit1s1Û1#
2@1 2 eit2s2Û2#

2 F0D
5 O

k51

K dk

@1 2 eit1~s12v1k!# 2@1 2 eit2~s22v2k!# 2 , [41]

in which the peaks are narrow and have quasi-absor
lineshapes if the absolute value spectrumuI (2)(s1, s2)u is plot-
ted. That is,uI (2)(s1, s2)u will have a great resolution advanta

ver uI (s1, s2)u. Note, also, that an amplitudedk is not squared
lthough the peak integral will effectively be divided by

actor Im{v 1k}Im{ v 2k}, defined by the two widths. That i
I (2)(s1, s2) will favor the narrow peaks against the broad o
As before, these effects can be reduced by shifting the
trum using uI (2)(s1 1 iG 1, s2 1 iG 2)u which effectively
increases the widths of all peaks, making them more unif

While I (2)(s1, s2) cannot be constructed by FT, it is rep-
sentable in terms of theU-matrices in complete analogy w
Eq. [28]. Of course, the corresponding resolvents shou
regularized accordingly. In Fig. 5 we show the RRT spe

FIG. 4. Chemical shift correlation spectra of the metalloprotein rubre
double-absorption spectra were generated using the conventional proc
on

.
c-

.

be
a

using uI (2)(s1 1 iG 1, s2 1 iG 2)u with G1 5 1 Hz andG2 5 10
Hz applied to the same 2D signal as in Fig. 4. The peak
have absorption lineshapes, although the heights are som
distorted when compared to the correct spectra of Fig
Clearly, many other spectral representations of this type

in obtained with gradient selection of the coherence transfer pathway.e
re that combines the complexN- andP-type spectra.

FIG. 5. RRT pseudo-absorption spectrumuI (2)(s1 1 iG 1, s2 1 iG 2)u (see
Eq. [41]) constructed using only theN-type (i.e., the purely phase modulat
data of Fig. 4 withN1 5 16, N2 5 300, q 5 0.0003,G 1 5 2 Hz, andG2 5
1 Hz.
dox
edu
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137RRT: THE REGULARIZED RESOLVENT TRANSFORM
available, each of which can have their own advantages
disadvantages.

4. SUMMARY

We have presented new numerical expressions for
resolution spectral estimation of multidimensional time
nals. Under the condition that the data exactly fits the Lo
zian assumption, RRT possesses the optimal property of
able to produce the exact infinite time DFT spectra using
a finite and small portion of the time domain data.

The main advantages of RRT are the following. (i) It i
direct transformation of the time domain data into the
quency domain spectrum. (ii) Unlike most other nonlin
spectral estimators, it is easy to use. There is no need to
much with the adjusting parameters as the results
smoothly depend on them. (iii) Unlike the multidimensio
versions of FDM, in RRT the regularization can be imp
mented in a very straightforward fashion. The regulariza
parameterq unambiguously controls the spectral appearan
arger value ofq systematically suppresses the artifacts
mall spectral features, providing a more uniform spe
stimate, albeit with decreasing resolution.
Although FDM and RRT are very closely related, RRT, a

he regularization, loses the structure that was present
ally in FDM, which allows one to obtain a parametric
cription, i.e., a direct line list. The inability to provide a l
ist seems to be the main disadvantage of RRT. This
articular, makes it difficult to obtain spectral representat
e.g., a double-absorption spectrum from a purely phase
lated data) that are different from the conventional D
herefore, FDM has, in principle, fewer limitations both on

ype of data to be processed and on the spectra to be
tructed. These issues will be explored in more detail in
orthcoming publications.
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